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Critical Exponents of Random Ising-Like 
Systems in General Dimensions 
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Critical exponents of weakly dilute Ising-like systems are computed for non- 
integer space dimensionalities in the range 2~<d~<4. The calculations are 
performed in the framework of the Callan Symanzik field-theoretic approach. 
Two-loop renormalization group functions are obtained as renormalized pertur- 
bation theory series expansions directly in noninteger dimensions. The values 
of the critical exponents are estimated with the use of the two-variable Borel 
resummation method. 

KEY WORDS:  Critical phenomena; disordered spin systems; Ising model; 
field-theoretic approach in general dimensions. 

INTRODUCTION 

Much attention has been devoted recently to the investigation of different 
model lattice systems at noninteger space dimensionalities. The treatment 
of the critical behavior of spin systems at noninteger dimensions, besides 
being of purely academic interest, has several other attractions. There exist 
models where new phenomena can appear at noninteger space dimen- 
sionalities. As an example, the random-anisotropy model (RAM) (1) can be 
mentioned. It was shown (2) that in the case of infinite anisotropy there 
exists a competition between the space dimensionality and the number of 
spin components leading to either ferromagnetic or spin-glass ordering 
starting from some (noninteger) space dimensionality. The noninteger 
dimensionalities are widely used in the theory of fractals. The detailed 
analysis of fractal lattices has led to the controversial conjecture that some 
fraetal lattices could interpolate the standard regular lattices in noninteger 
dimensions. Finally, in the investigation of different model systems the 
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variations of dimensionalities of the order parameter and space can be used 
to link the results to the exact ones or to the results of other approximate 
calculational methods. (3--5) 

Although for regular isotropic models the values of critical exponents 
for noninteger space dimensionalities 2 ~< d ~< 4 are known with sufficiently 
high accuracy, (5) less is known in the case of anisotropic and random 
model systems. To our knowledge, the only paper where the critical 
exponents of the anisotropic cubic model and the dilute Ising model are 
calculated for 2.8 ~< d~<4 is that of Newman and Riedel. (3) The aim of the 
present paper is to compute the critical exponents of random Ising-like 
systems for noninteger space dimensionalities in the range 2 <~ d~< 4, using 
the field-theoretic approach. We employ the Callan-Symanzik massive field 
theory framework within the two-loop approximation. 

1. S T A T E M E N T  OF THE PROBLEM A N D  THE 
R E N O R M A L I Z A T I O N - G  ROU P FUNCTIONS 

The site-diluted random classical m-component spin system is 
described by the Hamiltonian 

1 
H =  - ~ .~ ~ jc i c j s , s j  (1.1) 

t, J 

where s~ and s i are m-component classical spins located at the lattice sites 
i and j; ~j  is the translationally-invariant short-range ferromagnetic 
exchange interaction potential; and ei and cj are the occupation numbers, 
the random variables having for each site i the probability distribution 

P(ci)  = c 6 ( c i -  1) + (1 - c) 8(c~) 

c is the concentration of the lattice sites occupied by the spins. The summa- 
tion in (1.1) is over all the sites of a regular d-dimensional lattice. 

The critical behavior of quenched dilute (6) m-vector model (1.1) is 
governed by the translationally-invariant effective field Hamiltonian of the 
form 

b/O IdlD~[ 2 o ( [ ~ 1 2 ) 2  (1 .2 )  +Z., +4"~ ~ ,=1  �9 ~ ,=1  
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in the replica limit n -4 0. (7) Here each vector field & - ~ ( r )  with c~ = 1 ..... n 
2 is the bare mass, which has m components (~U'I,..., ~U"~). The quantity m o 

is a linear function of temperature. Uo < 0 and v0 > 0 are the bare coupling 
constants. 

As is well known, the heuristic Harris criterion (8) gives the qualitative 
critical behavior of disordered spin systems. Namely, it predicts that the 
critical exponents of a dilute system will be the same as in the pure one if 
the specific heat exponent %uro of the pure system is negative. If, on the 
other hand, epure > 0, one can expect that disorder will lead to some new 
behavior. This picture is confirmed by the renormalization group (RG) 
calculations. From the very beginning the critical behavior of random spin 
systems was investigated by different RG methods in the vicinity of space 
dimensionality d = 4 .  (7'9 14) The critical exponents were obtained as rather 
short series in powers of 5 = 4 -  d (in the case of the random Ising model, 
m = 1, the expansion parameter is (11/ 51/2). The extrapolation of such series 
expansions toward large values of 5, say e = 1 or 5 = 2, could not lead to 
reliable numerical estimates. That is why papers appeared where the RG 
equations were treated directly at three or two dimensions following the 
approach proposed for pure systems by Parisi. (~5) The appropriate renor- 
malized perturbation series expansions combined with the asymptotic series 
resummations led to rather accurate values of the critical exponents for 
d = 3. (16-19) In the case of d =  2, with the use of the fermion representation 
for the dilute Ising model, it was shown that its critical behavior is identical 
to that of the pure Ising model, apart from some logarithmic factors. (19'2~ 
Also, the critical behavior of anisotropic and random spin systems was 
treated by the scaling-field (3) and the approximate RG (21-23) methods. 

In order to investigate the critical behavior of the effective 
Hamiltonian (1.2) at general space dimensions d, we use the standard pro- 
cedure of renormalization of the one-particle irreducible vertex functions 
I'(I~'U)(pl,...,pL; k 1 ..... ku; m~, Uo, vo;d) at zero external momenta and 
nonzero mass. (24) Asymptotically, close to the critical point, the renor- 
malized vertex functions F~U)( { kj} ; m 2, u, v; d) satisfy the homogeneous 
Callan-Symanzik equation (2n) 

- v) m u, v ; d ) = 0  (1.3)  

Here u, v, and m are the renormalized coupling constants and mass. This 
equation may be treated, in principle, for arbitrary noninteger fixed space 
dimensionality d. The/~ functions are defined by the equations 
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~3 In Uo 
/3u(U, V) ~ +/3v(U, V) 

0 In Vo 
/3u(u, v) -Sff-u +/3v(u, ~)  - - -  

T h e  function 7o(u, v) is defined as 

In Z~(u, v) 
~(u, v)=/3~(u, v) 

0 1 n u 0 = d _ 4  
gv 

in Vo 
- d - 4  

~v 

(1.4) 

+/3v(u, v) c3 In Zoo(u, v) (1.5) 
c~u ~v 

where the renormalization constant Z~ is given by 

_ 2 "d)lk2=o Z~_I ~3 F(2)(k; mo, uo, Vo (1.6) 
gk 2 

It is implied that the bare parameters m~, Uo, and Vo are expressed here in 
terms of renormalized ones. 

The solution of the Callan-Symanzik equations yields the critical 
exponents in d dimensions324) At the fixed point (u*, v*), which is defined 
by the simultaneous zero of both functions ft, and /3~, the function 
?o(u*, v*) gives the value of the Fisher exponent r/. The correlation length 
exponent v can be calculated from the consideration of the two-point 
vertex function with ~b 2 insertion, F(l'2)({0};m 2, Uo, vo;d). The massive 
field theory normalization condition for this vertex function implies the 
following definition of the renormalization constant Zo2, 

z ~  1 = F~ }; m~, u o, Vo; d) (1.7) 

Using this relation, one calculates the 7 function 

~702(u, v) = ft,(u, v) ~3 In Z~21 + fl~(u, v) ~ In Z~21 (1.8) 
~u 0v 

which at the fixed point gives the value of the critical exponent combina- 
tion 2 - v ' - q. Knowing two critical exponents q and v, one can compute 
the other ones using the familiar scaling relations324) 

The explicit expressions for the/3 and 7 functions corresponding to the 
effective Hamiltonian (1.2) at d dimensions in the two-loop approximation 
are as follows: 

f 
ft.(u, v) = - ( 4 -  d) u l l - u  

+ (m+2) j (d)]  + 

12 8 
v + 8. ~ ( m  + ) uZ[-(5m q- 22) f(d) 

mn 

m + 2  q 
96 8)uv (m+5)f(d)+------g---j(d)J 

(m + 8 )(mn + 

24 v2 I (mn+14) f (d )+~___2 j (d ) ] }  (1.9) 
+ (mn + 8) 2 
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fl~(u,v)= - ( 4 - d )  v{ 1-v-2m+2m+8 u+-(mn+8)28 v2[(5mn+22)f(d ) 

+ (mn + 2) j(d)]  + 24 (m + 8) ---------5 u2 f(d) + j(d) 

m + 2  ) uv[f(d)+~j(d)]}  
+ 96 (m + 8)(ran + 8 

2(m+2) ] [ m + 2  mn+2 V 2 . ~  - UV j(d) 
7~(u'v)=-4(4-d)[_(rn+8)2u2+ (mn+8)2 (m+8)(mn+8) 

(1.10) 
f m + 2  mn+2 [ m + 2  

~7+2(u, v) = (4 - d) ( - ~  u + mn + 8 v - 12 - - ( m  + 8) 2 u2 

m n + 2 v 2  m + 2  ] } 
+ 1 2 ( m n + 8 )  2 +24(m+8)(mn+8)uv f(d) (1.11) 

Here the following notations are introduced: 

1 
f(d) = il(d)[ D(d) ]-2 _ 

2 

j( d) = i2( d)[ D( d) ] -2 
(1.12) 

where D(d) is the one-loop Feynman integral 

dak 
~3 c (k2+ 1) 2 D(d)= (2re) (1.13) 

and il(d ) and i2(d ) are the following two-loop integrals: 

daql daq2 
(27r)-2dj((ql 2+ 1) 2 (q22+ 1)[(q~ +q2) 2+ 1] il(d) 

0 f daql daq2 
i2(d) = (2g) 2d ~ J (q2 q_ 1)(q2 + 1)[(ql q._ q2 + k) 2 + 1 ] 

k2=0 

(1.14) 

The renormalization-group functions given above were analysed by 
Jug (16) at n =0  for space dimensionalities d =  3 and d=2.  At d =  3 the 
integral combinations (1.12) can be calculated analytically: f ( 2 ) =  1/6, 
j(3) = -2/27. Substituting these values into the formulas for the fl and 
functions, one obtains the two-loop expressions for the RG functions of the 
mn-component anisotropic model in three dimensions. (25~ 
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2. CALCULATION OF THE INTEGRALS A N D  R E S U M M A T I O N  
OF THE RG FUNCTIONS 

To set up the numerical calculations of the 17 and 7 functions, one 
needs to know the values f(d) and j(d), (1.12), as functions of the 
continuous parameter d. Using the familiar rules for the computation of 
Feynman integrals, (24) one obtains for the one-loop integral D(d) in (1.13) 

D(d)=2-an d/2r (2-~ (2.1) 

The two-loop integrals il(d) and i2(d), (1.14), can be reduced to double 
integrals containing the space dimensionality d as a parameter. The 
required result is (note that the following representation is not unique) 

f(d)=V(e) 
~0 r x ( 1 - x ) ]  1 a/2 

(2.2) 
y ~/2 1 r 1 

XJo dy [x( l_x) ( l_  y)+ y], 2 

r ( ~ l  2 1 dx fl y~/2(1 _ y ) 
j ( d ) =  -V(e) r f dy L t,2)J [x(1-~)]-~/2 Jo ao [x(1-x)(1--y)+ y] ~ 

where e = 4 -  d, and F(x)  is the Euler gamma function. The last integrals 
can be computed numerically for any space dimensionality of interest. 
Some numerical values o f f (d )  and j(d) accurate to the fifth decimal figure 
are given in Table I. Figure 1 represents the dependence of these functions 

Table I. Typical Numerical  Values of Two-Loop Integrals 

d f(d) j(d) d f(d) j(d) 

2.0 0.28129 - 0.11463 3.0 0.16667 - 0.07407 

2.1 0.27042 - 0 . 1 1 1 0 5  3.1 0.15385 - 0 . 0 6 9 0 7  

2.2 0.25949 - 0.10740 3.2 0.14059 - 0.06378 

2.3 0.24846 - 0.10367 3.3 0.12670 - 0.05814 

2.4 0.23733 - 0 . 0 9 9 8 5  3.4 0.11232 - 0 . 0 5 2 0 8  

2.5 0.22606 - 0.09593 3.5 0.09703 - 0.04553 

2.6 0.21464 - 0 . 0 9 1 8 8  3.6 0.08084 - 0 . 0 3 8 3 8  

2.7 0.20303 - 0 . 0 8 7 6 9  3.7 0.06338 - 0 . 0 3 0 4 7  

2.8 0.19119 - 0 . 0 8 3 3 5  3.8 0.04440 - 0 . 0 2 1 6 2  

2.9 0.17908 - 0.07882 3.9 0.02347 - 0.01158 
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Fig. 1. 

" 0 . 3  

~ f ( a )  

0 . 2  

0.1 I j ( a ) l  
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Dependence of the two-loop integrals f and j on the space dimensionality d. The 
dashed curve gives the e-expansion result for f(d). 

on the space dimensionality d. For comparison, the e-expansion result 
accurate to the second order, 

e e 2 

f(d) = ~ + ~- (3 - J), J = 0.7494 

is shown on Fig. 1 by the dashed curve. 
Thus, using the results of numerical calculations of two-loop integrals 

for noninteger dimensions, one can proceed in the framework of the 
Callan-Symanzik massive field theory approach directly in the dimen- 
sionalities of interest. 

As is well known, renormalized perturbation series expansions like 
(1.9)-(1.11) are not convergent. In order to calculate the critical exponents 
proceeding from the RG functions (1.9)-(1.11), one has to apply to them 
a procedure of generalized summation of the series expansions. In the 
present paper we employ a two-variable resummation technique which is a 
simple generalization the of single-variable Pad6-Borel method. Such a 
technique has been applied (t6-19"25) for different models in integer space 
dimensions. 

The starting point is a truncated power series expansion of the form 

f(u, v)= ~ couiv j (2.3) 
i,j>~O 

(i+j<~n) 

One constructs for this polynomial the Borel transform 

F(ut, vt)= ~ cij (ut) i (vt) j (2.4) 
i,j>~o (i+j)! 

(i+j<~n) 
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Then the Borel transform F(x,  y)  is extrapolated by the rational approxi- 
mant FA(x,  y),  and the resummed function jT(u, v) is represented I~y the 
integral 

;5 ~(u, v) = FA(ut, vt) e t dt (2.5) 

Within the present two-loop approximation the nondiagonal rational 
approximant (26) is used, 

FA(u, v) -- 1 + aaoU + aol v + all uv (2.6) 
1 +blo u+bolv 

which gives at u = 0  or v = 0  the usual [-1/1] Pad6 approximant for the 
remaining variable. The coefficients a U and b o in (2.6) are 

b 10 = - -  d2o/dlo, bo, = -do2/dol 

alo =dlo + blo, aol = d0m + b01 (2.7) 

all = dll + blodol + boldlo 

where dkt= ckt/(k + l)!, ckt being the appropriate expansion coefficients of 
the function f ( u ,  v), (2.3). Substituting (2.6) into (2.5) and integrating over 
t, one obtains for the resummed function 

]'(u, v )=  [xeXEl(x)  - 1](1 --xy+allx2uv)+allXUV+ 1 (2.8) 

where x = (blo u + boi v) 1, y = alo u + aol v, and (27) 

S E l ( X ) = e  x (x + t ) - l  e-~ dt 

It is obvious that several different ways of calculation of the resummed 
function 97(u, v) are possible. First, the representation of the Borel trans- 
form by the rational approximant is not unique. One can choose different 
forms of rational expressions with different numbers of terms in the 
numerator and denominator. In principle, it is necessary to try all the 
possibilities for such rationals and to build a table of results appropriate to 
different forms of rational approximants. The best convergence of results 
should be reached in the direction of the main diagonal of such a table. But 
in practice usually approximations are chosen which do not essentially 
complicate the calculations. 

Moreover, the fl functions having the structure f l , , ( u , v ) =  
- ( 4  - d) uif,.(u, v) can be resummed in different ways if one constructs the 
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Borel transforms for the whole functions or for the functions f~(u, v). The 
possibility of such arbitrariness within the resummation procedure was 
noted and discussed (28) in the case of the n-vector isotropic ~b 4 effective 
Hamiltonian. For the three-dimensional ran-component anisotropic model 
(1.2) the resummations of flui(u, v) and of f,(u, v) lead to rather close 
numerical values of the critical exponents. (tS~ In the present paper the 
resummation of the whole fl functions flu,(u, v) is carried out. The explicit 
expression for the resummed fl functions which will be used in the 
following is of the form [cf. (2.7), (2.8)] 

]~,i(u, v) = - ( 4 -  d) blixi { (1 - -  x i Y i - - } -  a~i]x~uv)[1 - xeXEl(x) ] 

+ yi + a~](2--xi) uv} (2.9) 

The comparison between the two approaches to the resummation of the/~ 
functions is discussed elsewhere. (29) Whereas the difference between the 
fixed point coordinates calculated with the use of different resummations 
is significant, the critical exponents (especially for d>2.5)  do not differ 
strongly. 

3. RESULTS 

3.1. Pure ls ing  Model  

In order to test the method of calculation in general dimensions, we 
start from the pure Ising model described by the effective Hamiltonian (1.2) 
with Vo=0 and r e = n =  1. The two-loop RG functions for pure Ising 
system are obtained from (1.9)-(1.11) by putting v=0 ,  m =  1 (the coef- 
ficients at the powers of u do not depend on n). In this particular case the 
values of critical exponents for noninteger dimensions are known with 
high accuracy. (5) These values were computed by the resummation of five 
terms ~176 of the e-expansion series (e = 4 - d ) .  

The results of the numerical calculation of the pure Ising model critical 
exponents at different d are presented in Table II. Here the fixed point 
coordinates and the derivatives o)(d)= ]~'(u*) exhibiting the stability of the 
fixed points are given as well. The critical exponent v was calculated from 
the resummed function 1 -  ~2(u)-~'~(u), which corresponds at the fixed 
point to the value v 1 1. 

The Fisher exponent t/ was computed by direct substitution of the 
fixed point coordinate u* into the function 7~(u). The values of the other 
critical exponents were calculated using the familiar scaling laws. (24) Two- 
loop results for d =  2 and d =  3 which were given in ref. 16 are reproduced 
here. The comparison of our results with those of Le Guillou and Zinn- 
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Table II. Critical Indices of Pure Ising Model 

d v r/ ~ 4 2 /~ 6 u* co 

2.0 0.981 0.200 0.038 1.766 0.098 19.000 2.424 0.922 
2.1 0.924 0.168 0.060 1.693 0.124 14.671 2.318 0.909 
2.2 0.874 0,141 0.077 1.625 0.149 11.903 2.219 0.893 
2.3 0.830 0.118 0,091 1.652 0.173 10.004 2.125 0.874 
2.4 0,791 0.098 0.099 1.506 0.197 8.638 2.038 0.851 
2.5 0.758 0.081 0.105 1.455 0.220 7.606 1.955 0.827 
2.6 0,727 0.062 0.110 1.405 0.242 6.796 1.876 0,798 
2.7 0.700 0,055 0.110 1.362 0.264 6.152 1.802 0.767 
2.8 0.675 0.044 0.110 1.320 0.285 5.635 1.731 0.732 
2.9 0.652 0.035 0.106 1.283 0.305 5.203 1.662 0.695 
3.0 0.632 0.028 0,104 1.246 0.324 4,836 1.597 0.654 
3.1 0.614 0.021 0.097 1.214 0.344 4,526 1.533 0.609 
3.2 0.596 0.016 0.093 1.182 0.362 4,263 1.472 0.561 
3.3 0.580 0.012 0.083 1,155 0.381 4,030 1.412 0.509 
3.4 0.566 0.008 0.076 1.127 0.398 3,829 1.353 0.453 
3.5 0.553 0.006 0.066 1.102 0.416 3.648 1.295 0.392 
3.6 0.540 0.003 0.056 1.078 0.433 3,491 1.237 0.327 
3.7 0.529 0.002 0.043 1.057 0.450 3.347 1.180 0.256 
3.8 0.518 0.001 0.031 1.035 0.466 3.219 1.121 0.179 
3.9 0.509 0.000 0.015 1.018 0.484 3.105 1.062 0.094 

Justin (5~ is illustrated in Figs. 2 and 3. Here the exponents v and r/(In q) are 
plotted as functions of d and the best estimates (5) are marked by crosses. 
One can see that in the region d >  2.8 our results practically coincide with 
those of ref. 5. As d is decreased, a difference appears. For example, at d = 2 
the value of v differs from the exact one, v = 1, by approximately 0.02. 

Fig. 2. The critical exponent v of the pure Ising model as a function of d. The crosses give 
the results of ref. 5. 
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t - 2 . 0 '  2. 'r ' 2 . 8  ' 3. '2 3 .6  r 
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-6.0 ~X~  
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4 ~ d 

Fig. 3. The critical exponent t/ of the pure Ising model as a function of d. The crosses give 
the results of ref. 5. 

3.2. D i lu te  Ising M o d e l  

The results of the previous subsection suggest that the application of 
the resummation procedure to the two-loop RG functions of Section 2 
could be expected to produce reasonable critical exponent estimates for 
more complicated systems, one of them being the randomly dilute m-vector 
model. 

As was already noted, the critical behavior of the dilute m-vector 
system is given by the effective Hamiltonian (1.2) at n ~ 0. In this case the 
range of the renormalized coupling constants u > 0 and v ~< 0 is of interest. 
The fixed points defined by the simultaneous zero of both resummed /3 
functions (1.9) are stable and determine the critical behavior of the system 
if the eigenvalues b~ and b 2 of the stability matrix B=~u,/~Ujlu..~. are 
positive (or possess positive real parts if complex). It is well known that for 
large enough values of m, m > me, the isotropic (u* ~ 0, v* = 0) fixed point 
is stable and the critical behavior of a random system coincides with that 
of the corresponding pure system. When the number of the order 
parameter components decreases, starting from the marginal value mc, the 
pure fixed point becomes unstable and the crossover to the mixed fixed 
point ( u * ~ 0 ,  v * ~ 0 ; v * < 0 )  occurs. This last is appropriate for the 
description of new, "random" critical behavior. As was mentioned above, 

criterion. this qualitative picture agrees with the Harris �9 (8) 
Within the present two-loop approximation, mc = 2.01 for d =  3, and 

m c = 1.19 for d =  2. (16) Higher-order calculations lead to mc < 2 for d =  3. (28) 
The best theoretical estimate of mc in three dimensions is (31) 
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DILUTE * PURE 

J 
1.0 2.0 3.0 

tm 

4.0  mc 

Fig. 4. The results for mc as a function of d. The asterisks indicate the exact ( d =  2) ~2~ and 

most accurate ( d =  3) {311 values. 

me= 1.945-t-0.002. In two dimensions the exact value is me=  1. (2o) Here 
(see Fig. 4) we present the results of numerical calculations of mc in the 
range 2 ~< d~< 4. For d =  4, we have mc = 4 (recall that the second order of 
the e expansion yields mc=4-4e ) . ( 7 )  For  d =  3 and d = 2  the results of 
ref. 16 are reproduced. From Fig. 4 one can see that in the range of space 
dimensionalities 3 < d <  4 a new critical behavior should appear, under 
dilution, for integer values of m, m = 2 and m = 3. 

Table III, Critical Exponents of Dilute Ising Model  

d v r/ ~ u* v* b l b2 

2.0 1.012 0.198 -0 .024  2.562 -0 .130  0.933 0.096 

2.1 0.960 0.167 -0 .016  2.506 -0 .170  0.916 0.126 

2.2 0.914 0.141 -0.011 2.459 -0 .210  0.892 0.155 

2.3 0.873 0.119 -0 .007  2.421 -0 .252  0.863 0.185 

2.4 0.837 0.100 -0 .009  2.391 -0 .294  0.827 0.216 

2.5 0.804 0.833 -0 .010  2.370 -0 .338  0.784 0.248 

2.6 0.774 0.069 -0 .012  2.357 -0 .384  0.733 0.284 
2.7 0.747 0.057 -0 .017  2.352 -0 .433  0.670 0.326 

2.8 0.722 0.047 -0 .022  2.356 -0 .486  0.584 0.386 

2.9 0.699 0.038 -0 .027  2.371 --0.542 0.469 ~ 0.469 a 

3.0 0.678 0.031 -0 .034  2.396 --0.605 0.450 a 0.450 a 

3.1 0.658 0.024 -0 .040  2.436 -0 .676  0.429 ~ 0.429 a 

3.2 0.640 0.019 -0 .048  2.492 -0 .756  0.405 a 0.405 a 

3.3 0.622 0.014 -0 .053  2.572 -0 .852  0.378 a 0.378 ~ 
3.4 0.606 0.010 -0 .060  2.683 -0 .968  0.344 ~ 0.344 ~ 

a Complex. Real part is given. 
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. 

2.8 3-2 3.16 

Fig. 5. The critical exponent v of the dilute Ising model as a function of d. The dotted curve 
shows the results of ref. 3, and the open circles, the results of the resummation of the resum- 
mation of the e~/2 expansion. The asterisks give the exact ( d = 2 )  (2~ and most accurate 
( d =  3) (19) values. 

N o w  we return to the most  interesting case, m = 1, the random Ising 
model, where the new critical behavior is observed in the whole range 
2 < d < 4. Table III gives the values of the critical exponents of  d-dimen- 
sional random Ising systems, as well as the mixed fixed point coordinates 
u*, v* and the stability matrix eigenvalues b~, b 2. The smooth dependences 
of v(d) and r/(d) [In q/d)] are plotted in Figs. 5 and 6 by solid lines. The 

-1"~ ~ 2.~ ' 2~8 ' 372 

-5.0 

-7.0 

3 .'6 
d 

Fig. 6. The critical exponent r/of the dilute Ising model as a function of d, The dotted curve 
shows the results of ref. 3. The asterisks give the exact ( d =  2) (2~ and most accurate ( d =  3) (19) 
values. 
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approximations used in the present calculations lead to a limitation on the 
large values of d in the case of the dilute Ising model. The reason is that 
at large dimensionalities d>3 .5  a pole appears in the rational 
approximants fla(u*t, v't) entering the integral defining the resummed fl 
functions [-see (2.5)-(2.6)], and the corresponding integrals become 
divergent. We excluded the approximants with positive real poles from 
consideration, and that is why only the results up to dimensionality d = 3.4 
are presented. Again, the known two-loop results (16) for three and two 
dimensions are reproduced. 

The results of the present paper are compared with other available 
data in Figs. 5 and 6. The results of scaling-field method calculations in 
the region 2.8 ~< d~< 4 (3) are plotted by dotted curves. The limitation on the 
space dimensionalities on the left-hand side is caused by the fact that the 
truncated set of scaling-field equations considered in ref. 3 breaks down for 
the dimensionalities of space lower than 2.8. Also, the most accurate three- 
dimensional estimates (19) are shown in Figs. 5 and 6 by asterisks. Note that 
no reliable values of the critical exponents for dilute Ising systems could be 
obtained from the expansion in powers of e = 4 - d as was done for pure 
systems by Le Guillou and Zinn-Justin. (5) The reason is that the ~1/2 expan- 
sions for the dilute Ising model are known at present only up to O(~) [up 
to O(e 3/2) for ?]'](12,13) and also that the large-order behavior of the ~m 
expansion is not known. Nevertheless, we have tried to compute the critical 
exponents for the dilute Ising model in general dimensions from their e ~/2 
expansions using the resummation procedure described in Section 2, similar 
to what was done for the case d =  3. (32) The results for the exponent v are 
plotted in Fig. 5 by open circles. They are reasonable only rather close to 
d = 4. One can see from Fig. 5 that the results of the present paper obtained 
by the field-theoretic approach for fixed noninteger dimensionalities are to 
be preferred at lower space dimensionalities. 

For  the three~dimensional dilute Ising model within the two-loop 
approximation the approach to the fixed point is oscillatory, and the eigen- 
values of the stability matrix, bl and b2, are complex. Higher-order calcula- 
tions lead to positive real eigenvalues b 1 and b2 .(18'19) A similar situation 
takes place if one lowers the space dimensionality d remaining in the 
framework of the two-loop approximation (see Table III): b I and b2, which 
were complex at d =  3, become real and positive near d =  2.8. One can see 
the situation when the properties of the fixed point can be controlled by a 
shift of the space dimension d, similar to the case involving the higher- 
order calculations. Also, if one appropriately lowers the dimension of space 
d, within the two-loop approximation one can see the qualitatively correct 
three-dimensional picture of the crossover from the pure to the mixed fixed 
point at M = Mc < 2. (31) This suggests that the exploration of the RG equa- 
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tion in general, noninteger space dimensionalities can provide information 
on real, three-dimensional complex models of disordered or anisotropic 
materials. 

It is hard to expect that the results found here in the framework of the 
two-loop approximation would be extremely accurate. But some conclu- 
sions about their accuracy can be drawn. In the case of the theory with one 
coupling (considered in Section 3.1; pure Ising model) at d = 2  our result 
v(d=2)=0.981 differs from the exact v (d=2)=  1.0 by on the order 2%. 
With increase of d the accuracy increases as well and for the correlation 
length critical exponent, starting from d=2.5 it differs by less than 0.1% 
[compare data of Table II with those of Le Guillou and Zinn-Justin: (5! 
v(d=2.5)=0.758_5,  v(d=3)=0.631 + 15). Typical HTS results are 
v(d= 3)=0.6305_ 15; 0.6300+30; 0.6320_+ 10; 0.6295_+ 15 (see ref. 5 and 
references therein). The relative accuracy of the Fisher exponent t/ is 
worse (compare our ~/ from Table II with that of ref. 5: t/(d= 2.0) = 0.25, 
t/(d= 2.5)=0.11 + 1, ~/(d= 3.0)= 0.0375 _+25, as well as with HTS results, 
t/(d= 3) = 0.0360 + 20; 0.0390_+ 40; 0.0350 _+ 10 (see ref. 5 and references 
therein)). This is caused by the fact that the absolute value of t/is an order 
of magnitude less than that of v, as well as that ~/ was computed here by 
direct substitution of the fixed point coordinate into the appropriate RG 
function. 

A similar picture can be observed for the model with two couplings. In 
the case considered in Section 3.2 of the dilute Ising model at d=  2, our 
result v (d=2)=  1.012 (Table III) differs from Onsager's by on the order 
2%. At d = 3  the two-loop result v(d=3)=0.678 (Table III) differs from 
the four-loop result of Mayer et al., ~19) v(d= 3)=0.6701 by on the order 
0.1%. As in the case of the pure Ising model, the relative accuracy of deter- 
mination of 17 is worse [compare two-loop results q(d=2)=0.198, 
~/(d=3)=0.031 with Onsager's r / (d=2)= l /4  and the four-loop result 
t/(d= 3)= 0.0343.(t9)]. Let us give for comparison the most accurate value 
of me at d=  3 (marked by an asterisk on Fig. 4), mc(d= 3) = 1.945 + 0.002 (3~) 
[compare with the two-loop result mc(d= 3)=2.01] and the exact value 
mc(d= 2) = 1 [compare with the two-loop result me(d= 2) = 1.19]. 

It can be seen from the above data that the accuracy of the results 
obtained depends on d and in the case of the correlation length critical 
exponent for the dilute Ising model changes from 2% at d=  2 to 0.1% at 
d = 3. Such a dependence on the space dimensionality is caused by the dif- 
ferent values of numerical coefficients entering the series to be resummed, 
namely, by the increase of the stable fixed point value as d decreases. Such 
a situation needs a separate analysis. The values obtained here of the criti- 
cal exponents for the dilute Ising model at noninteger d are expected to be 
the most reliable in comparison with other data for noninteger d. The field- 
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theoretic approach used directly in noninteger dimensions can obtain infor- 
mation about the critical behavior of systems of interest. 
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